🛠️ Tools & Platforms for Gen AI

Essential resources for building with AI

The Gen AI Ecosystem

A comprehensive guide to the tools, platforms, and services that make building with generative AI easier and more accessible.

🤖 LLM Platforms

OpenAI

Models: GPT-4, GPT-3.5, DALL-E, Whisper

Best for: Production applications

Pricing: Pay-per-token

platform.openai.com

Anthropic Claude

Models: Claude 3 (Opus, Sonnet, Haiku)

Best for: Long context, safety

Pricing: Competitive with GPT-4

console.anthropic.com

Google Gemini

Models: Gemini Ultra, Pro, Nano

Best for: Multimodal tasks

Pricing: Free tier available

ai.google.dev

Hugging Face

Models: 500k+ open-source models

Best for: Experimentation, fine-tuning

Pricing: Free + paid hosting

huggingface.co

Cohere

Models: Command, Embed, Rerank

Best for: Enterprise, embeddings

Pricing: Free trial + usage-based

cohere.ai

Together AI

Models: Llama 2, Mistral, custom

Best for: Open-source models

Pricing: Cheaper than OpenAI

together.ai

🎨 Image Generation

Midjourney

Discord-based, photorealistic, artistic

  • $10/mo for 200 images
  • Best artistic quality
  • Community features

Stability AI (Stable Diffusion)

Open-source, customizable, self-hostable

  • Free (self-host) or API
  • Full control and fine-tuning
  • Active community

DALL-E 3 (OpenAI)

Integrated with ChatGPT, prompt adherence

  • $0.04 per 1024×1024 image
  • Best text rendering
  • Safety filters

Leonardo AI

Game assets, consistent characters

  • Free tier: 150 tokens/day
  • Canvas editor
  • Model training

🗄️ Vector Databases

Platform Type Best For Pricing
Pinecone Managed Production RAG Free → $70/mo
Weaviate Open/Managed Hybrid search Free → Enterprise
Chroma Open-source Prototyping Free
Qdrant Open/Cloud Performance Free → Enterprise
Milvus Open-source Large scale Free

🔧 Development Frameworks

LangChain

pip install langchain openai

# Build LLM apps with chains, agents, memory
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI

llm = ChatOpenAI()
chain = LLMChain(llm=llm, prompt=prompt_template)

LlamaIndex

pip install llama-index

# Data framework for LLM applications
from llama_index import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader('data').load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()

Haystack

pip install farm-haystack

# NLP framework for search and QA
from haystack import Pipeline
from haystack.nodes import BM25Retriever

pipeline = Pipeline()
# Build custom RAG pipelines

🖥️ Development Environments

Google Colab

Free Jupyter notebooks with GPU

  • Free T4 GPU
  • Pre-installed libraries
  • Easy sharing

Replit

Browser-based coding with AI

  • Instant deployment
  • Collaborative
  • AI coding assistant

Hugging Face Spaces

Deploy ML demos for free

  • Gradio/Streamlit
  • Auto-deploy from Git
  • Free hosting

Paperspace

Cloud GPUs for ML

  • A100, H100 available
  • Jupyter notebooks
  • $8/hr for A100

🎙️ Audio & Video

📊 Monitoring & Observability

LangSmith

Debug and monitor LLM apps

  • Trace chains
  • Evaluate outputs
  • Cost tracking

Weights & Biases

ML experiment tracking

  • Model training
  • Hyperparameter tuning
  • Team collaboration

Helicone

LLM observability platform

  • Request logging
  • Cost analysis
  • Caching

💡 No-Code / Low-Code Tools

📚 Learning Resources

Courses

Communities

🎯 Choosing the Right Tools

For Prototyping:

OpenAI API + LangChain + Chroma + Google Colab

For Production:

Claude/GPT-4 + Pinecone + LangSmith + Cloud deployment

For Learning:

Hugging Face + Local models + Free tier APIs

For No-Code:

Zapier + Make + Flowise

🎯 Key Takeaways