🤖 Types of Generative AI Models

Exploring different approaches to content generation

The Generative Model Landscape

There are several fundamentally different approaches to building generative AI systems. Each has unique strengths, weaknesses, and ideal use cases.

📊 Overview of Model Types

Model Type Best For Examples Difficulty
Transformers Text, Code GPT-4, BERT, T5 ⭐⭐⭐
GANs Images, Art StyleGAN, ProGAN ⭐⭐⭐⭐
VAEs Smooth latent space β-VAE, CVAE ⭐⭐⭐
Diffusion Models High-quality images Stable Diffusion, DALL-E 2 ⭐⭐⭐⭐
Autoregressive Sequential data PixelCNN, WaveNet ⭐⭐⭐
Flow-based Exact likelihood Glow, RealNVP ⭐⭐⭐⭐

1️⃣ Transformers

🎯 Best for: Text, Code, Sequential Data

Core Idea: Use attention mechanisms to process sequences and understand relationships between all parts of the input.

How They Work

Transformers process all tokens in parallel using self-attention to understand context:

# Simplified Transformer concept
class Transformer:
    def forward(self, input_tokens):
        # 1. Convert tokens to embeddings
        embeddings = self.embed(input_tokens)
        
        # 2. Add positional information
        embeddings += positional_encoding
        
        # 3. Self-attention: every word attends to every other word
        for layer in self.layers:
            # Q, K, V matrices
            Q = layer.query(embeddings)
            K = layer.key(embeddings)
            V = layer.value(embeddings)
            
            # Attention scores
            attention = softmax(Q @ K.T / sqrt(d_k))
            output = attention @ V
            
            # Feed-forward
            output = layer.ffn(output)
        
        return output

Key Features

Famous Models

GPT-4

OpenAI's latest, multimodal

~1.76 trillion parameters

Claude

Anthropic's constitutional AI

200B parameters

LLaMA 2

Meta's open-source LLM

7B - 70B parameters

BERT

Bidirectional encoder

110M - 340M parameters

2️⃣ GANs (Generative Adversarial Networks)

🎯 Best for: Photorealistic Images, Art, Face Generation

Core Idea: Two neural networks compete - a Generator creates fake data, a Discriminator tries to detect fakes. They improve together.

How They Work

# GAN Training Loop
class GAN:
    def __init__(self):
        self.generator = Generator()
        self.discriminator = Discriminator()
    
    def train_step(self, real_images):
        # 1. Train Discriminator
        # Generate fake images
        noise = torch.randn(batch_size, latent_dim)
        fake_images = self.generator(noise)
        
        # Discriminator tries to tell real from fake
        real_pred = self.discriminator(real_images)
        fake_pred = self.discriminator(fake_images.detach())
        
        d_loss = -torch.mean(torch.log(real_pred) + torch.log(1 - fake_pred))
        d_loss.backward()
        
        # 2. Train Generator
        # Try to fool discriminator
        fake_images = self.generator(noise)
        fake_pred = self.discriminator(fake_images)
        
        g_loss = -torch.mean(torch.log(fake_pred))
        g_loss.backward()

# Generator: Random noise → Realistic image
# Discriminator: Image → Real or Fake?

Key Features

GAN Variants

DCGAN

Deep Convolutional GAN - first stable architecture

StyleGAN

Control different levels of image style - SOTA for faces

CycleGAN

Image-to-image translation without paired data

BigGAN

Large-scale GAN for high-resolution diverse images

3️⃣ VAEs (Variational Autoencoders)

🎯 Best for: Latent Space Exploration, Interpolation

Core Idea: Encode data into a compressed latent space, then decode back. Learn smooth, continuous representations.

How They Work

# VAE Architecture
class VAE(nn.Module):
    def __init__(self):
        self.encoder = Encoder()  # Image → μ, σ
        self.decoder = Decoder()  # z → Image
    
    def forward(self, x):
        # 1. Encode to latent distribution
        mu, log_var = self.encoder(x)
        
        # 2. Reparameterization trick
        std = torch.exp(0.5 * log_var)
        eps = torch.randn_like(std)
        z = mu + eps * std  # Sample from N(μ, σ²)
        
        # 3. Decode back to image
        reconstruction = self.decoder(z)
        
        # Loss: reconstruction + KL divergence
        recon_loss = F.mse_loss(reconstruction, x)
        kl_loss = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
        
        return reconstruction, recon_loss + kl_loss

# To generate new images:
z = torch.randn(batch_size, latent_dim)  # Random point in latent space
new_image = vae.decoder(z)

Key Features

Use Cases

4️⃣ Diffusion Models

🎯 Best for: High-Quality Images, Text-to-Image

Core Idea: Gradually add noise to data, then learn to reverse the process. Generate by starting with noise and denoising.

How They Work

# Diffusion Process
class DiffusionModel:
    def forward_process(self, x0, t):
        """Add noise gradually: x0 → x1 → x2 → ... → xT (pure noise)"""
        noise = torch.randn_like(x0)
        alpha_t = self.noise_schedule[t]
        
        # Add noise according to schedule
        xt = torch.sqrt(alpha_t) * x0 + torch.sqrt(1 - alpha_t) * noise
        return xt, noise
    
    def reverse_process(self, xt, t, text_embedding):
        """Denoise step: predict and remove noise"""
        # U-Net predicts noise
        predicted_noise = self.unet(xt, t, text_embedding)
        
        # Remove predicted noise
        alpha_t = self.noise_schedule[t]
        x_prev = (xt - sqrt(1 - alpha_t) * predicted_noise) / sqrt(alpha_t)
        
        return x_prev
    
    def generate(self, text_prompt):
        """Generate image from text"""
        # Start with pure noise
        x = torch.randn(1, 3, 512, 512)
        text_emb = self.clip_encoder(text_prompt)
        
        # Denoise iteratively (50-1000 steps)
        for t in reversed(range(self.num_steps)):
            x = self.reverse_process(x, t, text_emb)
        
        return x  # Clean image!

Key Features

Famous Models

Stable Diffusion

Open-source, runs locally

DALL-E 2

OpenAI's text-to-image

Midjourney

Artistic, stylized images

Imagen

Google's photorealistic model

5️⃣ Autoregressive Models

🎯 Best for: Sequential Generation, Audio, High-fidelity

Core Idea: Generate one element at a time, conditioning on all previous elements.

How They Work

# Autoregressive Generation
def generate_autoregressive(model, seq_length):
    """Generate pixel by pixel (or token by token)"""
    image = torch.zeros(1, 3, 256, 256)
    
    # Generate one pixel at a time
    for i in range(256):
        for j in range(256):
            # Condition on all previous pixels
            prev_pixels = image[:, :, :i, :j]
            
            # Predict current pixel
            pixel_probs = model(prev_pixels)
            pixel = sample(pixel_probs)
            
            image[:, :, i, j] = pixel
    
    return image

# P(image) = P(pixel_1) * P(pixel_2 | pixel_1) * P(pixel_3 | pixel_1, pixel_2) * ...

Key Features

Examples

6️⃣ Flow-based Models

🎯 Best for: Exact Likelihood, Invertible Transformations

Core Idea: Learn invertible transformations between simple and complex distributions.

How They Work

# Flow-based Model
class NormalizingFlow:
    def forward(self, x):
        """Data → Latent (exact)"""
        z = x
        log_det = 0
        
        for flow_layer in self.layers:
            z, layer_log_det = flow_layer(z)
            log_det += layer_log_det
        
        return z, log_det
    
    def inverse(self, z):
        """Latent → Data (exact)"""
        x = z
        
        for flow_layer in reversed(self.layers):
            x = flow_layer.inverse(x)
        
        return x
    
    def generate(self):
        """Sample from simple distribution, transform to complex"""
        z = torch.randn(batch_size, latent_dim)  # Simple Gaussian
        x = self.inverse(z)  # Complex data distribution
        return x

Key Features

Popular Models

🔄 Comparison Matrix

Feature Transformers GANs VAEs Diffusion
Quality ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐ ⭐⭐⭐ ⭐⭐⭐⭐⭐
Training Stability ⭐⭐⭐⭐ ⭐⭐ ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐
Generation Speed ⭐⭐⭐ ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐ ⭐⭐
Diversity ⭐⭐⭐⭐ ⭐⭐⭐ ⭐⭐⭐⭐ ⭐⭐⭐⭐⭐
Controllability ⭐⭐⭐⭐⭐ ⭐⭐⭐ ⭐⭐⭐⭐ ⭐⭐⭐⭐

🎯 Which Model Should You Choose?

Decision Guide

For Text Generation:

Transformers (GPT, T5, LLaMA)

Best quality, most flexible, industry standard

For Image Generation:

Diffusion Models if quality is priority

GANs if speed is critical

VAEs if you need smooth interpolation

For Audio/Music:

Autoregressive (WaveNet) for quality

Diffusion for music composition

For Research/Custom Applications:

Flow-based if you need exact likelihoods

VAEs for interpretable latent spaces

🚀 Emerging Hybrid Approaches

Modern systems often combine multiple approaches:

  • DALL-E 2: Diffusion + CLIP (Transformer)
  • Stable Diffusion: Diffusion + VAE latent space
  • VQ-GAN: GAN + Transformer
  • Parti: Pure Transformer for images

🎯 Key Takeaways